PHEROMONES. 71¹⁾. IDENTIFICATION AND SYNTHESIS OF FEMALE SEX PHEROMONE OF ERI-SILKWORM, Samia cynthia ricini (LEPIDOPTERA: SATURNIIDAE)

Hans Jürgen Bestmann^{a)*)}, Athula B. Attygalle^{a)+)}, Jürgen Schwarz^{a)}, Wolfgang Garbe^{a)}, Otto Vostrowsky^{a)} and Ichiro Tomida^{b)}

a)Organic Chemistry Institute of the FAU-University Erlangen-Nürnberg, Henkestr. 42, D-852 Erlangen, FRG, and b)Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano-ken, 399-45 Japan

Summary: $(4E, 6E, 11Z) - 4, 6, 11$ -Hexadecatrienal and $(4E, 6E, 11Z) - 4, 6, 11$ -hexadecatrienyl acetate were identified as the major components of the sex pheromone of the eri-silkworm, *Samiu Cynthia ricini,* females.

The eri-silkworm moth *Samia cynfhia ricini* Donovan (Lepidoptera: Saturniidae) is indigenous to China and Southeast Asia. It is an insect often **used** in electrophysiological investigations because of easy rearing, availability, and the size of its antennae, In the procedures **used** for isolation of insect brain hormones, it serves as an excellent monitor of hormonal activities²). Females of the eri-silkworm moth emit a sex pheromone which attracts conspecific males. A preliminary study, based on functional group tests followed by a bioassay, by Tomida and Ishii³) has indicated that the major component of the pheromone is a diunsaturated conjugated aldehyde. We report here the complete identification and synthesis of the major components of the pheromone.

The intersegmental membrane between the abdominal segments 8 and $9⁴$ was excised from laboratory-reared. $3-$ to 5-day-old virgin females⁵⁾, during the period of maximum calling. The excised membranes were extracted with hexane (10 μ) and the extracts were analyzed by GC and GCMS. In the chromatogram (Fig. 1), two pheromone-like peaks were recognized by their mass spectra (Table 1). The electron-impact mass spectrum of the later-eluting component 2 showed that the molecular ion was m/z 278 (C₁₈H₃₀O₂). The signal at m/z 218 (arising from a loss of CH₃COOH from the molecular ion), the prominent ion m/z 43 (CH₃CO), and a small but significant ion at m/z 61 (CH₃COOH₂), indicated that the component 2 was a hexadecatrienyl acetate.

2912

The presence of an aldehyde function in component 1 was confirmed by condensation with l,l-dimethylhydrazine (DMH)⁶⁾ (Scheme 1). The biological activity of the extract, monitored as electroantennographic (EAG) responses, was drastically reduced after this reaction. The CC peak due to component 1 disappeared completely after the reaction and a new peak corresponding to hydrazone 3 appeared later in the chromatogram. The molecular ion of the mass spectrum of hydrazone 3 (Table 1) at m/z 276 corresponded to that of a triunsaturated hydrazone. The spectra of N , N -dimethylhydrazones of long-chain saturated aldehydes show a significant fragment, which is the base peak in most cases, at m/z 86, due to the formation of CH₂=CH-NH-NMe₂][†] by a McLafferty rearrangement⁷). This ion is also the base peak of the spectra of unsaturated aldehydes, if the first double bond is not in the vicinity of the aldehyde group⁷). The hydrazones of α , β -unsaturated aldehydes are unable to undergo a McLafferty rearrangement; they experience an allylic fission to yield

CH₂=CH-CH=CH-N=N⁺Me₂ at m/z 111. The absence of an ion at m/z 111 in the spectrum of aldehyde-1hydrazone 3 indicated that 1 is not an α , B-unsaturated compound. A McLafferty rearrangement is also not possible in unsaturated aldehydes, when a double bond is present at C-4. The mass spectra of hydrazones of such unsaturated aldehydes yield a significant ion at m/z 85 due to the ion CH₂=CHN=N⁺Me₂⁸). The presence of the ion m/z 85 as the base peak of the spectrum of 3 indicated that the first double bond is present at C-4. A mass spectrum obtained from the DMH derivative of 4,6,10-hexadecatrienal 8^9) was very similar to that of 3.

The Diels-Alder addition of tetracyanoethylene (TCNE) to dienes is known to proceed stereospecifically, and at least for the conjugated dienes of R-CH=CH-CH=CH-R' type, only the (E,E) -isomers react with TCNE under mild conditions¹⁰). In fact, component 2 underwent reaction with TCNE to yield the adduct 4 (Scheme 1), confirming an (E,E) -conjugated diene system is present in 2. The mass spectrum of adduct 4 yielded a small, but significant and structurally diagnostic fragment at m/z 305 due to the loss of the alkyl side chain containing the acetate moiety (Scheme 2).

Scheme 2 305 HH 4 K = $-(CH_2)_3C=ClCH_2)_3$ $_{2})_{3}$ -O-COCH₃ **Nd 'CN** HH 4, 10 10 R = $-(CH_2)_2C=C(CH_2)_4$ The mass spectrum of the TCNE-adduct 10 obtained from $(4E, 6E, 10Z)$ -4,6,10-hexadecatrienyl acetate 9 was very similar to that of adduct 4 and also contained the ion at m/z 305. These results indicated the presence of a $(4E, 6E)$ -diene moiety in component 2.

In order to solve the problem of the location of the third double bond in component 2, we proceeded as illustrated in scheme 1: Acetate 2 was monoepoxidized by m -chloroperbenzoic acid (mCPBA) to 5. The product 5 was hydrogenated by reaction gas chromatography¹¹ to 6. The retention time of the hydrogenated product 6 on a polar SP-2340 capillary column was compared with those obtained from a series of positional and geometric isomers of epoxyhexadecyl acetates. The retention time of product 6 was identical to that of the epoxide obtained by the reaction of mCPBA with (Z) -11-hexadecenyl acetate 7. These results allowed us to propose the structure $(4E, 6E, 11Z) - 4, 6, 11$ -hexadecatrienyl acetate for component 2. Assuming a biogenetic relationship between component 1 and 2, the component 1 was tentatively identified as $(4E.6E.11Z)-4.6.11$ -hexadecatrienal.

In order to confirm the proposed identifications, the aldehyde **1** and acetate 2 were synthesized by a stereospecific cross-coupling reaction of vinyl halides with vinyl stannanes, catalyzed by palladium¹²⁾ as shown in scheme 3. 2-Hydroxytetrahydropyran **11 was** reacted (Z)-selectively with pentylidene triphenylphosphorane 12 (silazide technique)¹³⁾ by Wittig reaction to give (Z) -5-decen-1-ol 13. The alcohol 13 was subsequently oxidized with pyridinium chlorochromate (PCC) to (Z) -5-decenal 14. $(1E, 6Z)$ -1,6-Undecadienyl iodide 15, one of the two coupling synthons, was obtained by the reaction of 14 with CHI₂/CrCl₂¹⁴⁾. The second coupling reagent, (E)-5-(tributylstannyl)-4-penten-l-01 17, was obtained by hydrostannylation of 4-pentyn-l-01 16 according to $ref.$ ¹⁵⁾. Cross-coupling of iodoalkadiene 15 with stannyl compound 17 using bis(acetonitril)dichloropalladium(II) (MeCN)₂PdCl₂ as catalyst¹²⁾ in DMF at room temperature yielded $(4E, 6E, 11Z) - 4, 6, 11$ -hexadecatrien-1-ol 18, which was oxidized either to $(4E, 6E, 11Z) - 4, 6, 11$ -hexadecatrienal 1 or acetylated to $(4E, 6E, 11Z) - 4, 6, 11$ -hexadecatrienyl acetate 2 according to scheme 3. Scheme **3 11** \checkmark **HH 0** OH + $Ph_3P=CH(CH_2)$ $_3CH_3$ \longrightarrow CH_3 (CH₂) $_3C=C(CH_2)$ $_3-CH_2H_3$

 12 13

$$
\xrightarrow{\text{PCC}} \text{CH}_3(\text{CH}_2)_{3}^{\text{C}=C(\text{CH}_2)_{3}-\text{CHO}} \xrightarrow{\text{CrCl}_2} \text{CH}_3(\text{CH}_2)_{3}^{\text{H H}} \xrightarrow{\text{H}} \text{CH}_3^{\text{H}}
$$

$$
HC=C(CH_2)_{2}-CH_2OH \xrightarrow{Bu_3SnH} H_{C=C} \times (CH_2)_{2}-CH_2OH
$$
16

15 + 17
$$
\xrightarrow{\text{(MeCN)}_2\text{PdCl}_2}
$$
 CH₃ (CH₂)₃C=C(CH₂)₃-C=C-C=C-(CH₂)₂-CH₂OH
H H
18

PCC --CH3(CH2)3~=:(CH2),:=C-~=C(CH,),-CH0 1 H H Ac20/Py I 2 CH3 (CH2) 3:=:(CH2) j:=C-!=C(CH2) 2-CH20-COCHJ H H

The mass spectra and GC retention times of synthetic 1 and 2 were identical to those obtained from natural 1 and 2. The synthetic aldehyde 1 elicited very high EAG activity whereas that of synthetic acetate 2 was moderate.

Preliminary behavioral tests show that a mixture of synthetic 1 and 2 releases wing flutter responses in males similar to those evoked by a gland extract. A sensory cell responding specifically to aldehyde 1 was found in male antennae by electrophysiological investigations (electrosensillogram, ESG). However, we have not yet been able to locate a cell stimulated by the acetate 2.

+) Presented at the EUCHEM Symposium on Semiochemicals in Plant and Animal Kingdom, Angers, France, Oct. 12-16, 1987.

Acknowledm. We wish to thank the Deutsche Forschungsgemeinschaft and the Stiftung Volkswagenwerk for financial support and the Deutscher Akademischer Austauschdienst for a fellowship to I. T.

$References$ and Notes

- 1) Pheromones, 70: H.J. Bestmann and K. Dippold, Z. Naturforsch. $44c$, in press (1989).
- 2) M. Ichikawa and H. Ishizaki, Nature (London) 191, 933 (1961); H. Nagasawa , H. Kataoka, A. Isogai, S. Tamura, A. Susuki, H. Ishizaki, A. Mizoguchi, Y. Fujiwara and A. Susuki, Science 226, 1344 (1984).
- 3) I. Tomida and S. Ishii, Appl. Entomol. Zool. 3, 103 (1968).
- 4) A.B. Attygalle, M. Herrig, O. Vostrowsky and H.J. Bestmann, J. Chem. Ecol. 13 , 1299 (1987).
- 5) We thank Prof. H. Ishizaki, Dept. of Biology, Nagoya University, Japan, for *Samia* pupae.
- 6) C.A. McDaniel and R.W. Howard, J. Chem. Ecol. μ , 303 (1985).
- 7) D. Goldsmith and C. Djerassi, J. Org. Chem. 31 , 3661 (1966).
- 8) A.B. Attygalle, A. Zlatkis and B.S. Middleditch, J. Chromatogr., in press (1989).
- 9) We thank Drs. D. Hall and A. Cork, Overseas Development Natural Resources Institute, Kent, England, for a sample of 4,6,10-hexadecatrienyl alcohol and acetate. The corresponding aldehyde was made from the alcohol by oxidizing with PCC.
- 10) D.R. Hall, P.S. Beevor, R. Lester and B.F. Nesbitt, Experientia 36, 152 (1980).
- 11) A.B. Attygalle and E.D. Morgan, Anal. Chem. 55 , 1379 (1983).
- 12) J.K. Stille and B.L. Groh, J. Am. Chem. Soc. 109, 813 (1987).
- 13) H.J. Bestmann, O. Vostrowsky and W. Stransky, Chem. Ber. 109, 1694 (1976).
- 14) K. Takai, K. Nitta and K. Utimoto, J. Am. Chem. Soc. 108, 7408 (1986).
- 15) M.E. Jung and L.A. Light, Tetrahedron Lett. 23, 3851 (1982).

(Received in Germany 14 March 1989)